Наблюдения за значением случайной величины в 50 испытаниях дали следующие результаты: 3,86 3,99 3,71 4,03 4,06 3,69 3,81 4,14 3,67 3,76 4,02 3,72 3,97 3,71 4,17 4,33 3,76 3,94 3,72 3,82 3,61 3,82 4,09 4,03 3,96 4,16 3,78 3,62 4,04 3,76 4,02 3,91 3,84 4,00 3,73 3,94 3,46 3,52 3,98 4,08 3,89 3,57 3,88 3,92 3,87 4,01 4,18 4. 07 3,93 4,26 Построить группированный вариационный ряд с равными интервалами, где первый интервал 3,45÷3,55, второй 3,55÷3,65 и т. д. Построить эмпирическую плотность вероятности, эмпирическую функцию распределения вероятностей. Найти моду и медиану. Построим вариационный ряд – выборку в порядке возрастания: В результате получим следующие границы интервалов: Подсчитаем частоту каждого интервала, то есть число вариант, попавших в этот интервал. Относительные частоты ∗ определим по формуле: ∗ = Номер интервала Интервал Середина интервала Частота Относительная частота Построим эмпирическую плотность вероятности: Эмпирическая функция распределения выглядит следующим образом Для интервального ряда (с равными интервалами) мода определяется по следующей формуле: нижнее значение модального интервала; – частота в модальном интервале; частота в предыдущем интервале; частота в следующем интервале за модальным; ℎ – размах интервала. Модальный интервал – это интервал с наибольшей частотой, т. е. в данном случае. Тогда Медианой в статистике называют варианту, расположенную в середине вариационного ряда. Для интервального ряда медиану определяют по формуле: нижняя граница интервала, в котором находится медиана; ℎ – размах интервала; накопленная частота в интервале, предшествующем медианному; частота в медианном интервале. Медианный интервал – это тот, на который приходится середина ранжированного ряда, т. е. в данном случае.